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This paper presents the trajectory tracking approach of a piezoelectric actuator using an

iterative learning control (ILC) scheme based on B-spline network (BSN) filtering. The

ILC scheme adopts a state-compensated iterative learning formula, which compensates

for the state difference between two consecutive iterations in order that the iterative

learning can learn from the tracking errors of the previous iteration effectively. The BSN

is used to attenuate the noises and retrieve the signals of the tracking errors for the ILC.

The BSN serves as a unique filter which generally does not have zero-phase responses.

Design details on the ILC scheme using BSN filtering are discussed in the paper.

Extensive experiments of tracking two desired trajectories for a piezoelectric actuator

are presented. The experimental results show that the state-compensated ILC scheme

using BSN filtering can achieve fast error convergence and keep small steady-state

tracking errors close to the system noise level. This research thus relaxes the restriction

of the zero-phase criterion commonly applied to the ILC filtering in the literature.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Owing to the advantages of infinite small displacement, high stiffness, and wide bandwidth, piezoelectric actuators have
been commonly used for precision positioning in various engineering fields, such as positioning of diamond machine tools,
positioning of optical lenses, and positioning of masks in semiconductor manufacturing. However, the piezoelectric
actuators are nonlinear devices, and can be characterized by certain hysteresis phenomena between their input voltages
and output displacements. Various control schemes have been proposed in the literature to compensate for the nonlinear
behaviors of the actuators. For example, there were schemes using the Preisach model-based control [1] and the neural
sliding-mode control [2].

Differing from other endeavors of control complexities, some studies initiated the simpler approach using the iterative
learning control (ILC) [3]. Certain degrees of success were achieved in tracking control of piezoelectric actuators by using
the P-type ILC, the current-error-assisted D-type ILC, the model-assisted ILC, and the state-compensated ILC schemes [4–8].
The state-compensated ILC (SCILC) proposed by the authors [8] is a novel scheme, which enhances the traditional ILC by
adding a state compensation enhancement to the iterative learning. In [8], a zero-phase (ZP) finite impulse response
(FIR) filter was used to filter the learnable errors for the ILC. The major goal of this paper, on the contrary, is to relax
the restriction of ZP filtering by adopting the B-spline network (BSN) for error filtering. The BSN consists of a number of
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B-spline basis functions to realize an input–output mapping. The mapped output is a linear combination of these basis
functions. The BSN structure has been proposed in the learning feed-forward control (LFFC) [9–15] to enhance the
performance of feedback control systems. The BSN in the LFFC is tuned by the feedback control effort of the previous
iteration to generate a feed-forward control effort in the current iteration. The feed-forward control effort is thus modified
iteratively in order that the system output will approach the desired trajectory eventually. The BSN is basically a function
approximator [15], and the tuning mechanism of the BSN is in essence a general non-ZP filter [10]. The BSN is adopted in
this research to filter the learnable errors of the previous iteration without a zero phase in general. The filtered errors are
then used for learning in the current iteration.

The remainder of the paper is organized as follows. Section 2 describes the experimental setup. Section 3 introduces the
SCILC. In Section 4, the BSN filtering is discussed. In Section 5, a convergence analysis is performed for the SCILC. Section 6
addresses the time-frequency analysis of tracking errors. Section 7 presents the controller design details and the
experimental results. Finally, Section 8 concludes this paper.
2. Experimental setup

The experimental platform in this research consists of a piezoelectric actuator unit, an electronics unit, a data
acquisition device, and a personal computer, as shown by Fig. 1. The piezoelectric actuator has the displacement from �8 to
40mm corresponding to the input voltage from �30 to +150 V. The actuator has a built-in strain gauge which is connected
to the sensor amplifier of the electronics unit. The amplifier outputs a sensing voltage ranging from +0.2 to �1 V. The data
acquisition device samples the sensing voltage for the control program and delivers the control effort to the power
amplifier, which has a gain of 30 to drive the actuator. The data acquisition device has 12-bit A/D and D/A converters with a
maximum sampling rate of 100 K-samples per s for input and 1 K-samples per s for output.

The control program is written in MATLAB, and it utilizes Data Acquisition Toolbox functions of MATLAB to perform
online learning control within the Windows operating system. The program implements the SCILC scheme using the
B-spline network filtering technique, as introduced in the following.
Computer Data Acquisition
Device

Electronics
Unit

PZT
Unit

Control
Program

D/A Converter

A/D Converter

PZT Amplifier

Sensor Amplifier

PZT Actuator

Strain Gauge

Fig. 1. (a) Block diagram of the experimental setup. (b) Picture of the electronics unit and the PZT unit.
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3. State-compensated ILC

A variety of ILC formulas have been proposed in the literature. A notable class of iterative learning control is the current
iteration tracking error ILC (CITE-ILC). It has a typical update law in the discrete-time domain [6]:

uiðnÞ ¼ ui�1ðnÞ þ L ei�1ðnþ 1Þ þ K eiðnÞ (1)

where u is the input, e is the output error, L is the learning gain, K is the proportional gain, n is the time index, and the
subscripts i and i�1 denote the current iteration and the previous iteration, respectively. In theory, error convergence of
Eq. (1) can be proved with certain assumptions such as the initial state restriction and the Lipschitz condition [16].

To relax the restrictions on traditional ILC such as the CITE-ILC, the authors proposed the SCILC [8] with the formula

uiðnÞ ¼ ui�1ðnÞ þ L ei�1ðnþ 1Þ þ K½eiðnÞ � ei�1ðnÞ� (2)

In Eq. (2), the difference between ei(n) and ei�1(n) means the difference of output error at time instant n between
iteration i and iteration i�1. This difference of output error is the same in magnitude as the difference of system output. It
indeed implies the difference of system state at time instant n between the two iterations, when the system output is used
as one major state variable. Therefore, the term K[ei(n)�ei�1(n)] can offset the state difference between the current and
previous iterations at any time instant n. Using the state compensation, the SCILC can relax the convergence assumptions
for traditional ILC and yield more precise tracking [8].

In Eq. (2), the learnable error is ei�1(n+1), which is the error happening in the previous iteration. This tracking error is
inevitably contaminated by disturbances in a real system, and should be filtered before the ILC learns it in the current
iteration. Let ẽi�1(n+1) denote the filtered output of ei�1(n+1). According to Eqs. (1) and (2), we have then the CITE-ILC
implementation equation

uiðnÞ ¼ ui�1ðnÞ þ L ~ei�1ðnþ 1Þ þ K eiðnÞ (3)

and the SCILC implementation equation

uiðnÞ ¼ ui�1ðnÞ þ L ~ei�1ðnþ 1Þ þ K½eiðnÞ � ei�1ðnÞ� (4)

respectively. In Eqs. (3) and (4), the current error ei(n) is not filtered, since such real-time filtering will induce a certain
phase delay, which is not desirable in general. Hence, its companion ei�1(n) in Eq. (4) is not filtered either. Fig. 2 is a
flowchart of the SCILC algorithm (4), where Gp, H, and z1 denote the plant, the BSN filter, and the one-step advance element,
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Fig. 2. Flowchart of the SCILC scheme.
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respectively. Let the z-transform of a variable x(n) be denoted by X(z). Since the z-transform of ẽi�1(n+1) is zẼi�1(z), we can
transform Eq. (4) into the z-domain expression as

UiðzÞ ¼ Ui�1ðzÞ þ L z ~Ei�1ðzÞ þ K½EiðzÞ � Ei�1ðzÞ� (5)

Eq. (5) will be further expanded in the end of the next section to generate a complete SCILC equation in the z-domain.

4. B-spline network filtering

Essentially, the BSN in the LFFC is tuned with an iterative method in order that the system output can approach the
desired trajectory eventually. A typical time-indexed LFFC system is shown by Fig. 3-a [15], and a second-order BSN is
shown by Fig. 3-b [10]. The LFFC system in Fig. 3-a has the control formula

uiðnÞ ¼ ub
i ðnÞ þ uf

i ðnÞ

where ui(n), ui
b(n), and ui

f(n) are the system control effort, the feedback control (FBC) effort, and the feed-forward control
effort at time instant n of iteration i, respectively. The BSN in the LFFC thus maps the time instant n to the feed-forward
control ui

f(n). In Fig. 3-b, each B-spline represents a basis function that has a membership m(n)A[0,1] for the input of time
instant n. The triangular B-splines have a support width D corresponding to the bottom width of the triangle, and
are equally paced by D/2. For convenience, let B denote the half support width, i.e. B ¼ D/2. The BSN output is evaluated
[10,14] by

uf
i ðnÞ ¼

XM
k¼0

mkðnÞw
i
k (6)

where the splines are numbered from left to right as 0, 1,y,M, respectively, and wk
i denotes the weight of spline k in

iteration i. The weights of the splines are tuned by the FBC effort [14] according to

Dwi
k ¼ wi

k �wi�1
k

¼ g
XN

m¼0

mkðmÞu
b
i�1ðmÞ (7)

where g is the learning rate, and each learning iteration starts from time instant 0 up to N. Combining Eqs. (6) and (7)
leads to

uf
i ðnÞ ¼ uf

i�1ðnÞ þ gyðnÞ (8)
BSN

FBC P
+

+ub(n)

uf(n)

u(n)

-
+

e(n)r(n) y(n)

Time n

# 1# k1 # M-1# k2 # M# 0

k1B k2B (M-1)Bn MB(k1-1)B time

1

0

# k1-1
μ

a

1-a

B

D

aB
B0

Fig. 3. (a) Time-indexed LFFC system. (b) Second-order B-spline network.
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where

yðnÞ ¼
XM
k¼0

mkðnÞ
XN

m¼0

mkðmÞu
b
i�1ðmÞ

" #
(9)

From Fig. 3-b, it is observed that at any time instant n there are exactly two splines activated in Eq. (9). If the left and
right activated splines are denoted as spline k1 and k2, respectively, we have

k1 ¼ n=B
� �

; k2 ¼ n=B
� �

(10)

where db c and dd e are flooring and ceiling operators, respectively. We can then reduce Eq. (9) to

yðnÞ ¼
X

k¼k1 ;k2

mkðnÞ
XN

m¼0

mkðmÞu
b
i�1ðmÞ

" #
(11)

For convenience, a normalized time fraction a is defined as

a ¼ n=B� k1; a 2 ½0;1� (12)

From Fig. 3-b, one gets the memberships of splines k1 and k2 at time instant n as

mk1
ðnÞ ¼ 1� a; mk2

ðnÞ ¼ a (13)

respectively. Substituting Eq. (13) into Eq. (11) yields

yðnÞ ¼ ð1� aÞ
XN

m¼0

mk1
ðmÞub

i�1ðmÞ þ a
XN

m¼0

mk2
ðmÞub

i�1ðmÞ (14)

Let the label * denote the convolution operation. According to [10], we can transform Eq. (14) to the filter form as

yðnÞ ¼ ½ð1� aÞz�aB þ azð1�aÞB� hzpðnÞ
nub

i�1ðnÞ (15)

where hzp(n) is the impulse response of a zero-phase filter which is represented by a symmetrical B-spline basis centered at
time instant n, and the z-transform of hzp(n) is

HzpðzÞ ¼
XB

l¼�B

1�
jlj

B

� �
z�l (16)

By labeling the digital frequency as f and replacing z in Eq. (16) with ej2pf
¼ ej2p0, we get the zero-frequency response of

Hzp(z), and it is equal to B. We can then rewrite Eq. (15) as

yðnÞ ¼ Bhða;nÞnub
i�1ðnÞ (17)

where h(a, n) is the impulse response of the BSN filter with unity response at zero frequency, and its z-transform, i.e. the
transfer function of the BSN filter in the z-domain, is

Hða; zÞ ¼ ½ð1� aÞz�aB þ azð1�aÞB�HzpðzÞ=B (18)

Since the BSN filter H(a, z) depends on a, in general it has non-ZP frequency responses. Inserting Eq. (17) into Eq. (8)
results in the following LFFC update law based on the second-order BSN:

uf
i ðnÞ ¼ uf

i�1ðnÞ þ gdhða;nÞnub
i�1ðnÞ

where gd ¼ gB. Finally, by inserting Eq. (16) into Eq. (18) and replacing z with ej2pf, we obtain the transfer function of the
BSN filter in the frequency domain as

Hða; f Þ ¼
1

B
½ð1� aÞe�j2pf aB

þ a ej2pf ð1�aÞB

�
XB

l¼�B

1�
jlj

B

� �
e�j2pfl (19)

In this research, we use Eq. (18) to filter the learnable error in Eq. (4), i.e.

~ei�1ðnþ 1Þ ¼ hða;nÞnei�1ðnþ 1Þ (20)

By performing the z-transform for Eq. (20), we have

~Ei�1ðzÞ ¼ Hða; zÞEi�1ðzÞ (21)
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Inserting Eq. (21) into Eq. (5) yields the complete SCILC equation in the z-domain as

UiðzÞ ¼ Ui�1ðzÞ þ ½L z Hða; zÞ � K� Ei�1ðzÞ þ K EiðzÞ (22)

Eq. (22) will be used in the next section for convergence analysis of the SCILC.

5. Convergence analysis

The convergence analysis of SCILC (4) can be approached in the frequency domain as follows. In general, an ILC formula
can be expressed as

uiðnÞ ¼ ui�1ðnÞ þ Gff ei�1ðnÞ þ Gfb eiðnÞ (23)

where Gff and Gfb denote the feed-forward gain and the feedback gain, respectively. We can transform Eq. (23) in the
z-domain as

UiðzÞ ¼ Ui�1ðzÞ þ Gff Ei�1ðzÞ þ Gfb EiðzÞ (24)

Suppose the plant has a linear transfer function Gp(z) such that

YiðzÞ ¼ GpðzÞUiðzÞ; Yi�1ðzÞ ¼ GpðzÞUi�1ðzÞ (25)

where Yi(z) and Yi�1(z) denote the system output in iteration i and i�1, respectively. Since

EiðzÞ ¼ YdðzÞ � YiðzÞ; Ei�1ðzÞ ¼ YdðzÞ � Yi�1ðzÞ

where Yd(z) is the desired output, and Ei(z) and Ei�1(z) are the errors in iteration i and i�1, respectively, we can rewrite
Eq. (25) as

YdðzÞ � EiðzÞ ¼ GpðzÞUiðzÞ; YdðzÞ � Ei�1ðzÞ ¼ GpðzÞUi�1ðzÞ (26)

By multiplying Eq. (24) by Gp(z) and referring to Eq. (26), we obtain

EiðzÞ

Ei�1ðzÞ
¼

1� Gff GpðzÞ

1þ GfbGpðzÞ
(27)

Replacing z in Eq. (27) with ej2pf yields the frequency domain expression

rðf Þ ¼ Eiðf Þ

Ei�1ðf Þ

����
���� ¼ 1� Gff Gpðf Þ

1þ GfbGpðf Þ

����
���� (28)

where r(f) is defined as the convergence rate. The condition of error convergence is

rðf Þ ¼ Eiðf Þ

Ei�1ðf Þ

����
���� ¼ 1� Gff Gpðf Þ

1þ GfbGpðf Þ

����
����o1; 8f (29)

Now, by comparing Eq. (22) with Eq. (24) and replacing z with ej2pf, we have

Gff ¼ L ej2pf Hða; f Þ � K ; Gfb ¼ K (30)

Substituting Eq. (30) into Eq. (29) leads to

rða; f Þo1; 8f ; 8a (31)

rða; f Þ ¼ 1� ½L ej2pf Hða; f Þ � K� Gpðf Þ

1þ K Gpðf Þ

����
���� (32)

where the convergence rate is re-labeled as r(a, f), since it is now a function of both the normalized time fraction a and the
frequency f.

In many situations, however, Eq. (31) may not hold for all frequencies. Instead, the inequality may be valid only for
frequencies below a certain threshold. Hence, we define a convergence bandwidth fb as the threshold frequency that
satisfies

rða; f bÞ ¼ 1; 8a (33)

or, by referring to Eq. (32),

rða; f bÞ ¼
1� ½L ej2pf b Hða; f bÞ � K� Gpðf bÞ

1þ K Gpðf bÞ

����
���� ¼ 1; 8a (34)

The convergence bandwidth varies with a, and should be labeled as fb(a) indeed. If Eq. (34) has multiple real roots, then
fb(a) is the minimal positive root; if Eq. (34) has no real root, fb(a) is assigned as the Nyquist frequency. For error
convergence, one should select a proper support width for the BSN filter such that its cutoff frequency fc(a) is less than the
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convergence bandwidth fb(a) for any a, i.e.

f cðaÞof bðaÞ; 8a (35)

If the system has the property that the signal components of the tracking errors all reside in the frequencies below the
cutoff fc(a) for any a, then the selection of Eq. (35) ensures that all signal components of the errors will be learned and
converge to zero eventually. Therefore, by using Eq. (35), tracking errors will finally diminish to the system noise level.
6. Time-frequency analysis

On the condition of Eq. (35), we can select a proper cutoff frequency such that the signal components of the tracking
errors are retrieved whereas the noise components are filtered out. Distinguishing the signal from the noise can be
accomplished by analysis of the errors. To analyze non-stationary data such as the tracking errors, the short-time Fourier
transform (STFT), wavelet transform (WT), and Wigner–Ville distribution (WVD) are typical methods. In general, the WVD
can characterize the time-dependent spectra of the data better than the STFT and WT [17], but it has the drawback of cross-
term interference. Nevertheless, the interference problem can be treated by WVD variations, such as the notable smoothed
pseudo WVD [17]. Referring to the ILC study using the time-frequency analysis in [9], we adopted the WVD to analyze the
tracking errors. Some properties of the WVD are stated in the following.

The WVD of a signal x(t) is defined as

Wxðt; FÞ ¼

Z 1
�1

x t þ
t
2

	 

x� t �

t
2

	 

e�j2pFt dt (36)

where t, F, and * denote the analog time, the analog frequency, and the conjugate of a variable, respectively. By using Wx(t,
F), the instantaneous frequency (IF) of x(t) can be recovered as

FxðtÞ ¼

R1
�1

Wxðt; FÞF dFR1
�1

Wxðt; FÞdF
(37)

Due to the frequency marginal property of the WVD, the energy density spectrum (EDS) of x(t) can be obtained by

jXðFÞj2 ¼

Z 1
�1

Wxðt; FÞdt (38)

Further, the smoothed pseudo WVD of x(t), Wx
0(t, F), is given by

W 0
xðt; FÞ ¼

R1
1

wðtÞ
R1
�1

vðt � t0Þx t0 þ t
2

� �
x� t0 � t

2

� �
dt0

 �
e�j2pFt dt (39)

where w( � ) and v( � ) are smoothing functions such as the Hamming windows used to eliminate the cross-term interference
problem of the WVD analysis. Eqs. (36)–(39) will be used in the next section for the time-frequency analysis of tracking
errors in order to determine the cutoff frequency and the support width of the BSN filter.
0 0.02 0.04 0.06 0.08 0.1
−5

0

5

10

15

20

25

30

35

Time (second)

A
ct

ua
to

r d
is

pl
ac

em
en

t  
(m

ic
ro

m
et

er
)

Fig. 4. Desired tracking profiles: a single-sinusoid trajectory (the solid curve), and a multiple-sinusoid trajectory (the dotted curve).
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7. Experiments

Two desired trajectories as shown in Fig. 4 were the tracking targets for implementing the SCILC scheme. Both
trajectories had a stroke length of 32mm and a cycle time of 0.1 s. Each trajectory was tracked five cycles per iteration in the
experiment, and thus had a frequency of 10 Hz. The solid curve in Fig. 4 represents one cycle of the first trajectory which
was a single sinusoid of 10 Hz frequency. The dotted curve in Fig. 4 depicts one cycle of the second trajectory which
consisted of two sinusoids: a fundamental sinusoid of 10 Hz frequency and its second harmonic of 20 Hz frequency. For
convenience, the first and second trajectories are named as the single-sinusoid trajectory and the multiple-sinusoid
trajectory, respectively, in what follows.

Based on a sampling rate of about 1000 samples per second according to the experimental setup, there were about 100
samples in each trajectory. Besides the initial iteration required for starting the learning process, there were 50 learning
iterations in each experiment. The design of the iterative learning controller is described as follows.
7.1. Iterative learning controller design

In this design, the digital frequency f (cycles/sample) is adopted as the default frequency. The analog frequency F (Hz) is
equal to the digital frequency f times the sampling rate S (samples/s). Since S is about 1000 samples per second in the
experiments, F is thus equal to 1000f approximately.
7.1.1. Learning gain and proportional gain

To simplify our experiments, we equalized the proportional gain K and the learning gain L, i.e. K ¼ L. From the ratio of
the sensor amplifier output �1 V maximum to the power amplifier input +5 V maximum, we chose �1/5 as the nominal
gain g of the system. We then assigned g�1, i.e. �5, to both the learning gain and the proportional gain as a reasonable value
for use in the experiments.
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Fig. 5. Normal plots of the convergence rate r(a, f) for (a) a ¼ 0, (b) a ¼ 0.25, (c) a ¼ 0.5, and (d) a ¼ 0.75, respectively.
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7.1.2. Convergence bandwidth of the SCILC system

According to Eq. (32), the convergence rate r(a, f) depends on L, K, H(a, f), and Gp(f). The gains L and K have been assigned
�5 as above. The frequency response of the filter H(a, f) is given by Eq. (19). Here, the transfer function Gp(f) can be
estimated as

Ĝpðf Þ ¼ �0:0823e�j2pf�0:0068e�j4pfþ0:0564e�j6pf

1�0:873e�j2pf

by using a system identification technique [7]. Hence, we can obtain the convergence rate r(a, f) by using Eq. (32). Fig. 5
gives four normal plots of r(a, f) for a equal to 0, 0.25, 0.5 and 0.75, respectively. In each sub-figure, the solid curve
represents r(a, f) while the dashed line means the unity value, and the first intersection of the two traces determines the
convergence bandwidth for the corresponding a. Fig. 6 shows the zoom-in plots of r(a, f), from which one can observe
clearly the intersections of the r(a, f) curves with the unity lines for different a values. By using Eq. (34), we obtain the
convergence bandwidth fb(a) of the SCILC system at 0.249, 0.196, 0.124, and 0.249, corresponding to the values of a equal to
0, 0.25, 0.5, and 0.75, respectively. Fig. 7 shows the plots of the convergence bandwidth fb(a) versus the normalized time
fraction a for the half spline support B equal to 3, 4, 5, and 6, respectively. It can be observed from the figure that the
minimum fb(a) occurs when a is equal to 0.5, and it is 0.17, 0.12, 0.10, and 0.08, corresponding to the values of B equal to 3, 4,
5, and 6, respectively. The plots of the convergence bandwidth in Fig. 7 will be used in sub-section 7.1.4 for determining the
cutoff frequency and support width of the BSN.

7.1.3. Wigner–Ville distribution of tracking errors

For a controlled system with recorded tracking errors of past iterations, one can analyze the frequency contents of the
errors using Eqs. (36)–(39) [8]. Fig. 8 shows the typical frequency contents of the tracking errors occurring in this
experimental system. The subplots in the figure show (a) a typical tracking error record, (b) an estimation of its
instantaneous frequency, (c) an estimation of its energy density spectrum, and (d) its smoothed pseudo WVD, respectively.
From Fig. 8, one can observe that the tracking errors of the experimental system resided in two separate frequency bands:
one low-frequency band which was below a frequency of about 0.08, and the other high-frequency band which was above a
frequency of roughly 0.15. Hence, it can be reasonably assumed that the low-band spectra were correlated to input signals
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to the system, whereas the high-band spectra were caused by system disturbances. Therefore, one can select a proper
support width for the BSN filter such that it has a cutoff frequency fc(a) being above 0.08, but below the convergence
bandwidth fb(a) according to Eq. (35), for any a.
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7.1.4. Support width of the BSN

Given a support width D or a half support width B of the BSN, one can use Eq. (19) to acquire the frequency response
of the BSN filter, and thus get the cutoff frequency fc(a) of that filter for any normalized time fraction a. For example,
given B equal to 4, one can thereby obtain the magnitude responses of the filter as shown in Fig. 9, and the phase responses
of the filter as shown in Fig. 10, for a equal to 0, 0.25, 0.5, and 0.75, respectively. In Fig. 9, by adopting �8 dB attenuation
as the cutoff threshold [10], the cutoff frequencies of the filter are 0.11, 0.078, 0.069, and 0.078 for a equal to 0, 0.25, 0.5,
and 0.75, respectively. Further, since the phase delay of a filter is determined by the negative derivative of its phase
response, one can observe from Fig. 10-a and -c that the BSN filter has zero-phase delay when a is equal to 0
and 0.5, respectively. Moreover, according to Fig. 10-b, the filter has positive phase delay (i.e. phase lag) for some
frequencies when a is equal to 0.25. On the other hand, from Fig. 10-d, the filter has negative phase delay (i.e. phase lead)
for some frequencies when a is equal to 0.75. This means that the BSN filter is not ZP in general, except for some distinct a

values.
Fig. 11 gives the plots of fc(a) versus a for B equal to 3, 4, 5, and 6, respectively. It is observed that fc(a) has a minimum

fc,min on a equal to 0.5 and a maximum fc,max on a equal to 0 or 1. Indeed, fc,min and fc,max are 0.10 and 0.18 for B equal to 3;
0.08 and 0.13 for B equal to 4; 0.06 and 0.10 for B equal to 5; 0.05 and 0.09 for B equal to 6, respectively. By comparing Fig. 11
with Fig. 7, it is obvious that the convergence condition (35) is satisfied for all B values. Hence the selection of B is subject to
the criterion that the cutoff frequency fb(a) should be above 0.08 and below 0.15, in accordance with the WVD analysis of
tracking errors in the previous sub-section, for any a. Therefore, judging from Fig. 11, it is proper to select 4 for the half
support width B, or 8 for the support width D, of the BSN.

In summary, the BSN filter (19) was determined by selecting the half support width of 4. The filter then served the
filtering of learnable tracking errors for the SCILC (4) and CITE-ILC (3) schemes. Both schemes used the same gain of �5,
and were applied to track the desired trajectories, respectively, for comparison. For presentation compactness, we will use
the terms SCILC and CITE-ILC in the next sub-section to represent the SCILC and CITE-ILC schemes based on the designed
BSN filter, respectively. The experimental results accompanied by their tracking performances are presented in the
following.
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Fig. 12. RMS errors vs. iteration index: (a) using the SCILC to track the single-sinusoid trajectory, (b) using the SCILC to track the multiple-sinusoid

trajectory, (c) using the CITE-ILC to track the single-sinusoid trajectory, and (d) using the CITE-ILC to track the multiple-sinusoid trajectory.
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7.2. Experimental results

Fig. 12 shows the experimental results of (a) using the SCILC to track the single-sinusoid trajectory of 10 Hz and 32mm,
(b) using the SCILC to track the multiple-sinusoid trajectory of 10 Hz and 32mm, (c) using the CITE-ILC to track the single-
sinusoid trajectory of 10 Hz and 32mm, and (d) using the CITE-ILC to track the multi-sinusoid trajectory of 10 Hz and 32mm,
respectively. In Fig. 12-a, the tracking errors converged within several iterations, and the steady-state RMS errors were
about 0.16% (0.052mm) of the stroke length. Likewise in Fig. 12-b, the errors converged quickly and had steady-state values
at about 0.21% (0.068mm) of the stroke length. In Fig. 12-c and -d, however, the errors diverged after a couple of iterations.
It is evident that the SCILC outperforms the CITE-ILC substantially in tracking performance.

Considering the strain gauge accuracy and the ADC and DAC accuracies for the experimental setup, the system noise
level was estimated to be about 0.15% of the stroke length. Hence, on trajectory tracking of the piezoelectric actuator
system, the control scheme presented in this paper proves to be effective in achieving fast error convergence for the system,
and the long-term stability is retained with its tracking errors close to the background noise level. Furthermore, according
to our experiments, the SCILC could yield similar results for the controlled piezoelectric actuator system even though the
learning and proportional gains were varied by the amount of 72. This implies that the proposed SCILC controller is quite
robust in terms of gain variations.

In order to evaluate the overall performance of the proposed SCILC, the controller for the piezoelectric actuator using the
same control parameters was further employed to track the two desired trajectories for different frequencies and stroke
lengths. Fig. 13 gives the results of using the SCILC to track the single-sinusoid trajectories with their frequencies and
strokes as (a) 5 Hz and 16mm, (b) 5 Hz and 40mm, (c) 20 Hz and 16mm, and (d) 20 Hz and 40mm, respectively. The obtained
steady-state RMS errors are (a) 0.25% (0.040mm) for 5 Hz and 16mm, (b) 0.11% (0.046mm) for 5 Hz and 40mm, (c) 0.29%
(0.047mm) for 20 Hz and 16mm, and (d) 0.22% (0.089mm) for 20 Hz and 40mm, respectively. Fig. 14 shows the results of
using the SCILC to track the multiple-sinusoid trajectories for their frequencies and strokes of (a) 5 Hz and 16mm, (b) 5 Hz
and 40mm, (c) 10 Hz and 16mm, and (d) 10 Hz and 40mm, respectively. The steady-state RMS errors acquired are (a) 0.32%
(0.051mm) for 5 Hz and 16mm, (b) 0.15% (0.058mm) for 5 Hz and 40mm, (c) 0.34% (0.054mm) for 10 Hz and 16mm, and
(d) 0.19% (0.077mm) for 10 Hz and 40mm, respectively.
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Fig. 13. RMS errors vs. iteration index using the SCILC to track the single-sinusoid trajectory for different frequencies and strokes: (a) 5 Hz and 16mm;

(b) 5 Hz and 40mm; (c) 20 Hz and 16mm; and (d) 20 Hz and 40mm.
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From the observations on Figs. 12–14, the SCILC could obtain similar performances in tracking the desired trajectories
for certain ranges of different frequencies and strokes of the piezoelectric actuator. It indicates that the SCILC method is
consistent under the different frequencies of trajectory tracking. The consistency of the method under different frequencies
can be guaranteed by the fact that the control program of the method is designed using the digital period of the trajectory,
and can therefore apply to different frequencies of trajectory tracking. The limits of the SCILC method are, however, subject
to the limitation of the experimental platform. For example, when the frequency of a tracked single-sinusoid trajectory was
raised up to higher than 20 Hz, tracking errors deteriorated since the digital period was then smaller than 50 samples per
trajectory cycle. It is obvious that a smaller digital period will result in bigger tracking errors by nature of a typical digital
control system.
8. Conclusion

This research applied the BSN filtering to a state-compensated ILC scheme for trajectory tracking of a piezoelectric
actuator. The ILC filtering in the literature is usually based on a finite impulse response (FIR) or infinite impulse response
(IIR) design which aims at sharp cutoff and zero-phase filtering. On the contrary, the BSN filtering is apart from such FIR or
IIR design approach in terms of the cutoff sharpness and the zero-phase response. Nevertheless, as revealed by the
experimental results for the piezoelectric actuator, the SCILC scheme using BSN filtering could still achieve fast error
convergence and small steady-state errors in tracking the desired trajectories for wide ranges of frequencies and
amplitudes. The BSN filtering, therefore, relaxes the filter design criterion of zero-phase delay traditionally adopted in the
ILC literature. This paper also presents the detailed procedures of the controller design for the SCILC scheme based on BSN
filtering. The convergence bandwidth analysis of the system using the BSN-based SCILC scheme is discussed theoretically
and then applied to the controller design. The transfer function of the BSN filter is also derived. The formula of the transfer
function is then employed to determine the cutoff frequency and the support width of the filter, with the aid of the time-
frequency analysis of the tracking errors using the Wigner–Ville distribution method. The clearly described procedures of
the controller design are appealing for other applications using the SCILC scheme based on BSN filtering.
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Fig. 14. RMS errors vs. iteration index using the SCILC to track the multiple-sinusoid trajectory for different frequencies and strokes: (a) 5 Hz and 16mm;

(b) 5 Hz and 40mm; (c) 10 Hz and 16mm; and (d) 10 Hz and 40mm.
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