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Abstract. We attempt to develop a systematic scheme through adopt-
ing high-pass filtering �HPF� to well resolve value-preserved images
such as medical images. Our approach is derived from the Poisson
maximum a posteriori superresolution algorithm employing the HP
filters, where four filters are considered such as two low-pass-filter-
combination based filters, wavelet filter, and negative-oriented La-
placian HP filter. The proposed approach is incorporated into the pro-
cedure of finite-element-method �FEM�-based image reconstruction
for diffuse optical tomography in the direct current domain, posterior
to each iteration without altering the original FEM modeling. This
approach is justified with various HPF for different cases that breast-
like phantoms embedded with two or three inclusions that imitate
tumors are employed to examine the resolution performances under
certain extreme conditions. The proposed approach to enhancing im-
age resolution is evaluated for all tested cases. A qualitative investiga-
tion of reconstruction performance for each case is presented. Follow-
ing this, we define a set of measures on the quantitative evaluation for
a range of resolutions including separation, size, contrast, and loca-
tion, thereby providing a comparable evaluation to the visual quality.
The most satisfactory result is obtained by using the wavelet HP filter,
and it successfully justifies our proposed scheme. © 2008 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2907344�
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algorithm; finite element method; image reconstruction; diffuse optical tomography;
quantitative evaluation.
Paper 07288R received Jul. 31, 2007; revised manuscript received Nov. 21, 2007;
accepted for publication Nov. 28, 2007.

1 Introduction

Over the last several decades, there has been great enthusiasm
in developing medical imaging techniques to assist physicians
in detecting and diagnosing tumors and diseases. Today, the
efforts drive toward developing imaging systems employing
noninvasive, nonradioactive, and relatively low cost instru-
mentations. Near-infrared �NIR� diffuse optical tomography
�DOT� imaging is such an imaging modality that NIR light is
used to probe biological tissues and it is promising to continu-
ously monitor the status of tissues using NIR imaging. There-
fore, the realization of NIR DOT as a viable clinical imaging
modality would be a beneficial advancement in medical diag-
nosis. Basically, both the absorption and scattering tomogra-
phic images are evaluated in an NIR imaging system, thereby
relating absorption properties to the oxygen saturation of he-
moglobin content and water content, as well as scattering
properties to the scatter size and density or the mitochondrial
compartment and blood glucose concentration.1–5

An NIR spectral window exists from about
650 to 1000 nm wherein the absorption is relatively small,
which enables transillumination of NIR radiance through bio-
logical tissues. With a difficulty arising from strongly scatter-
ing effects in human tissues, the contrast and resolution of
optical images are severely reduced. Compared with conven-
tional x-ray mammography, magnetic resonance imaging
�MRI�, and ultrasound imaging all with acceptable resolutions
��100 mm�, but low intrinsic contrast ��10−1�, NIR imaging
possesses exceptionally high intrinsic contrast ��101–2�, but
exhibits inferior spatial resolutions ��101 mm� as a result of
highly scattering nature of biological tissues.4,6 Many efforts
have been made to improve NIR optical tomographic image
resolution through different ways.7–34 Hebden and Deply7 pro-
posed a method using the least-squares fit between the
temporal-distribution measures of transmitted light and a
model of the diffusion equation to enhance time-resolved im-
aging. Moon and Reintjes8 applied the Markov-chain tech-
nique to enhance optical image resolution. Jiang and Paulsen9

and Jiang et al.10–12 improved diffuse optical images in the
direct current �dc� domain using the scheme with total varia-
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tion minimization, dual mesh, and low-pass spatial filtering to
achieve a satisfactory result. Recently researchers have
adopted hybrid modalities to attain high-resolution NIR to-
mographic images by the use of a priori structural informa-
tion available from MRI �Refs. 13–18� or ultrasonic
imaging.19–21 Especially, the structure information acquired
from MRI was incorporated with a Laplacian-type regulariza-
tion integrated in the inversion-computation process.22,23 Ad-
ditionally, the spectral priors acquired from various source
wavelengths were combined with the reconstruction process,
validating improvement over spatial priors.24

For the enhancement of image reconstruction, Kanmani
and Vasus25 used a nonlinear approximation of the perturba-
tion equation through adding the second term involving the
Hessian in the Taylor expansion instead of a linear perturba-
tion model that adopts only the first order derivatives �the
Jacobian�, which is solved by using conjugate gradient search.
Furthermore, Jiang26 reconstructed optical images using the
third-order diffusion equation, providing more stable inverse
solutions. Pogue et al.27 improved diffuse optical images with
spatially variant regularization in the radial orientation,
thereby minimizing high-frequency noise and producing con-
stant image resolution and contrast. Brooks et al.28 and Zhang
et al.29 obtained accurate reconstruction images by the joint
use of measurement-model agreement, amplitude, and total
variation type constraints. Guven et al.30,31 proposed an adap-
tive multigrid algorithm for the enhancement of image reso-
lutions where two-level meshes were generated to provide
high resolution of the region of interest. Stott et al.32 presented
a technique to improve optical images through using simulta-
neous calibration of optode positions that were sensitive to
image quality. Furthermore, Ntziachristos et al.33 and Intes et
al.34 employed a fluorescent diagnostic agent, indocyanine
green �ICG� to enhance heterogeneity contrast for obtaining
better resolutions prior to optical image reconstruction. As to
the background information about image processing tech-
niques for the enhancement of reconstructed optical-property
images, especially applied in this study, some
monographs35–37 and related papers38–40 are valuable. Three
referred to books are rather appropriate for the beginner, es-
pecially the third one, and three reference papers are actually
the origin of the idea resulting in the proposed algorithm pre-
sented in this paper. Further, more references were reviewed
and introduced.

In this paper, the design of a high-pass filtering �HPF�
method to enhance optical images is studied. Based on the
viewpoint of image processing, generally, visual quality per-
ception is preferred to actual image values. Moreover, as is
known, the effect of an HP filter applied on an image to be
processed yields a different image, which cannot be used
when true optical property values are required. In this paper,
we attempt to develop a systematic scheme through adopting
HP filters for value-preserved images such as medical images.
Therefore, as simply implementing a specific HP filter to re-
solve NIR DOT images, it is not suitable that the procedure of
the conventional approach takes routine steps like HPF the
original image to be weighted and then histogram equaliza-
tion. As can be understood, this conventional image-
processing procedure is performed on optical property images
between a reconstruction and a true distribution. For instance,
one may be more interested in estimating the true values than

obtaining the visual effect. As a result, an approach to system-
atically implementing HPF is demanding. Additionally, recon-
structed highly resolved images that preserve true values are
extremely expected. In this paper, first we investigate the
properties of HP filters that can be classified into two types,
i.e., low-pass filter �LPF� combined form and a wavelet-like
filter, respectively. To preserve the true value distribution of
optical images, the approach proposed and realized is derived
from the Poisson maximum a priori �Poisson MAP� super-
resolution algorithm for the application of HPF on absorption-
and diffusion-coefficient DOT images. Following this, the
proposed approach is incorporated into the finite-element-
method �FEM�-based image reconstruction in the continuous
wave �cw� domain. Simulation results and their corresponding
evaluations are demonstrated and investigated by comparing
reconstruction with and without filtering.

This paper aims to �1� develop an approach derived from
the Poisson MAP superresolution algorithm to systematically
implement HP filters on optical property images; �2� justify
the proposed approach with various HP filters performed on
breast-like optical heterogeneity; �3� demonstrate the reso-
lution performance of this approach under certain extreme
conditions, significantly improving the reconstruction perfor-
mance even in the absence of a priori information or modified
reconstruction algorithms; and �4� define a set of measures for
the evaluation of computation resolutions on the separation,
size, and location of inclusions, and the contrast of inclusions
to background. Additionally, further discussions on these
measures are also provided. The paper is organized as fol-
lows. Section 2 briefly describes processing with HP filters
that are used to enhance an image. Following this, a novel
approach that starts from the Poisson MAP superresolution
algorithm is derived. Section 3 implements four HP filters on
several DOT images, and presents both qualitative and quan-
titative discussions of the reconstructed images. Finally, in
Sec. 4 we draw conclusions and discuss future works.

2 Theoretical Analysis of the Proposed
Approach

Following from the introduction this section concerns image
processing. As is known, a linear image enhancement tech-
nique can improve image visual quality but cannot preserve
its true values, whereas nonlinear image restoration can obtain
an improved and value-preserved image, but is time-
consuming. Here, we propose an approach derived from the
Poisson MAP superresolution algorithm. This approach is in-
corporated with the procedure of FEM-based image recon-
struction to obtain resolution-enhanced images. In this sec-
tion, conventional image processing is first addressed, then a
novel approach to implementing HP filters is derived, and
finally our proposed approach is integrated with DOT image
reconstruction.

2.1 Conventional Image Processing
In image processing, image enhancement is always used to
improve image visual quality. The techniques of contrast en-
hancement, histogram equalization, and HPF are usually
adopted. Contrast enhancement conducts an operation to ex-
pand the contrast of features of interest. The procedure of
histogram equalization, basically, transforms the histogram
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distribution of an image into an output image with an equal
number of pixels at each gray level. This causes a ragged
histogram to become flat. HPF is exactly a transfer function
with a unit at dc frequency and higher gains associated with
larger frequencies. Usually, edge enhancement can be re-
garded as an alternative to HPF, sharpening the edge but with
overshoot.

As described in some image-processing monographs,35–37

the HPF applied to improve image quality follows some rou-
tine steps such as the so-called high-frequency emphasis fil-
tering,

Hhef = a + bHhp, �1�

and histogram equalization, where Hhef denotes high-
frequency emphasis filtering in the frequency domain �FD�,
Hhp is an HP filter, a is an offset, and b is a weighting number
�usually, b�a�. Note that the capital to represent a filter is the
corresponding frequency function. Therefore, 1−Hlp is
adopted, a complementary filter to low-pass filtering in the FD
for an HP filter.

To achieve both improved image visual quality and pre-
serve true value distribution in biological applications, we ar-
gue in this paper that an in-depth investigation is required to
cope with the challenges of emergent biomedical imaging mo-
dalities. Before proposing our scheme, we first define HP,
filters and classify them for the convenience of following dis-
cussions. There are two types of hhp to be performed, respec-
tively. One is a differential filter through the combination of
two LPFs, and the other is an intrinsic �wavelet-like� HP filter.
It is sensible that an HP filter can be described as

hhp = hlp1 − hlp2, �2�

where hlp1 and hlp2 denote LPFs. More precisely, this repre-
sents a narrow full width at half maximum �FWHM� LPF
with a larger amplitude �A1� subtracted by a broad FWHM
LPF with a smaller amplitude �A2�. Both HP filters must com-
ply with two rules of thumb37 as follows:

Hhp�0� = A1 − A2 and �Hhp�max � A1. �3�

The difference between these filters is that the hlp1 of the
former rolls off faster than that of the latter. In this study,

Gaussian functions with various standard deviations ��� are
employed for hlp. Thus, the HP filter shown in Fig. 1 can be
formulated as

hhp�r� = g1�r� − g2�r� , �4�

where g1�r�= �A1 / �2��1
2�1/2�exp �−r2 /2�1

2� and g2�r�
= �A2 / �2��2

2�1/2�exp �−r2 /2�2
2�, respectively, and �1��2.

2.1.1 LPF-combined HP filter ��1��2�

This filter is usually determined with a smaller �1��1�, as
shown in Fig. 1�a�; this can also be determined with a larger
�1, as shown in Fig. 1�b�. If we let �1 approach zero, hhp1
narrows further to an impulse, then Eq. �4� can be expressed
in the frequency domain as 1−Hlp.

2.1.2 Wavelet-like HP filter

A dilated wavelet-like function expressed as

�a�r� =
1

�3a�4 �
�1 −

r2

a2�exp�−
r2

2a2� , �5�

where a is a dilated factor, as depicted in Fig. 1�c�, and can be
used as an HP filter.

2.1.3 Negative-oriented Laplacian HP filter

Alternatively, a 3�3 negative-orientated Laplacian edge op-
erator

	 0 − 1 0

− 1 4 − 1

0 − 1 0

 �6�

in a form similar to a wavelet is also considered and em-
ployed as an HP filter is this study.

As can be seen in Fig. 1, a wavelet-like HP filter has sharp
sidelobes rather than a LPF-combined HP filter.

Fig. 1 Two LPF-combined HP filters �a� 	−g2 and �b� g1−g2, and �c� a wavelet-like filter, where 	 is the delta function.
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2.2 Novel Approach Implementing HPF for Optical
Tomography

To find the fundamental theoretical basis to explain our pro-
posed novel approach, an attempt to derive the value-
preserving HPF technique begins with the Poisson MAP su-
perresolution algorithm. Mathematically, the algorithm38–40 is
given as

f̂ n = f̂ n−1 exp�� g

f̂n−1 � h
− 1� � h�  f̂ n−1C, n = 1,2, . . . ,N ,

�7�

where

C = exp�� g

f̂n−1 � h
− 1� � h� , �8�

is regarded as the correction term during the iterative restora-
tion progress; � represents a convolution; * represents cor-
relation; h denotes the point spread function �PSF�; g is the
observed image; and the subscript n is the number of iteration.

Additionally, f̂0 defined as g is the initial guess of iteration,

and f̂N is the final superresolved image. In terms of the op-
eration of Poisson MAP, it is an iterative algorithm, where
successive estimate of the restored image is obtained through
the multiplication of current estimate by such a quantity close
to one that is a function of the interpolated image divided by
a convolution of the current estimate with the PSF. Using
Taylor series expansion, Eq. �7� can be expanded to be ap-
proximate as

f̂ n � f̂ n−1�1 + � g

f̂n−1 � h
− 1� � h� = f̂ n−1 + f̂ n−1�� g

f̂n−1 � h

− 1� � h�  f̂ n−1 + 
 f̂ n−1, �9�

where the intermediate obtained image f̂ n can be expressed as

adding the previous one f̂ n−1 with a correction increment


 f̂ n−1. It is nontrivial to further explore the correction incre-
ment


 f̂ n−1 = f̂ n−1�� g

f̂n−1 � h
− 1� � h�

= f̂ n−1��g − f̂ n−1 � h

f̂n−1 � h
� � h� , �10�

where g− f̂ n−1 � h can be reduced to an increment 
 f̂ n−1 in a

condition of decreasing correction rate. Assuming f̂ n−1 � h ap-

proaches a constant as f̂ n−1 has a simple distribution. Thus,
Eq. �10� is approximated to


 f̂ n−1 �
f̂ n−1

f̂ n−1 � h
�
 f̂ n−1 � h� . �11�

Through point-by-point multiplying both sides of Eq. �11�
with 
 f̂ n−1, we obtain

�
 f̂ n−1��
 f̂ n−1� =
f̂ n−1

f̂ n−1 � h
�
 f̂ n−1 � h�
 f̂ n−1, �12�

and then reorganize Eq. �12� to yield

f̂ n−1 � h = f̂ n−1��
 f̂ n−1 � h�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�
� . �13�

As defined previously, h is the PSF like an LPF, and a Gauss-
ian function is employed in the study. Additionally, the opera-
tion of correlation is equivalent to take a convolution due to
the symmetry of function h. Therefore, Eq. �13� can be de-
rived to the following equation with the HPF definition

f̂ n−1 � hhp = f̂ n−1 � hlp1 − f̂ n−1 � hlp2

= f̂ n−1��
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�
�

=
�
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�/ f̂ n−1

. �14�

We here consider the quantity obtained through the convolu-
tion of an image and HPF as a new correction increment, i.e.,


 f̂ n−1 � f̂ n−1 � hhp. �15�

Thus, Eq. �15� is equivalent to


 f̂ n−1 =
�
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�/ f̂ n−1

. �16�

To further simplify Eq. �16� for numerical evaluation, we as-
sume that the denominator is a positive number relative to


 f̂ n−1, and finally get an approximate solution of the correc-
tion increment for using HPF, as follows


 f̂ n−1 =
�
 f̂ n−1�hhp�
 f̂ n−1�

�
 f̂ n−1�
 f̂ n−1�/ f̂ n−1

�
�
 f̂ n−1�hhp�
 f̂ n−1�

w�
 f̂ n−1�
, �17�

where the denominator is simplified with the norm of 
 f̂ n−1
multiplied by w, a weight number 10, used in computation as
well as herein the symbols �·� and �·� stand for the state and
�z �x and x �y� represent the operations of a point-by-point
product �z and x� and a convolution �x and y�, respectively,
resulting in the other state. In considering Eq. �17� used in the
computation of NIR DOT imaging, heterogeneities are treated
as a perturbation to homogeneous background for a phantom,
and incremental values of both absorption and scattering co-
efficients are estimated from a projection of a high-frequency
enhancement to the original increment.
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2.3 NIR DOT Image Reconstruction Incorporating

with Novel Approach
Compared with other medical imaging modalities, NIR imag-
ing requires the solution of an inverse problem. In NIR DOT
imaging, the fundamental equation governing the propagation
of light in biological tissues is the Boltzmann transport equa-
tion �BTE� to model the optical characteristics of the scatter-
ing and absorption.

The BTE is an integrodifferential equation, so it is rather
difficult to obtain solutions to the BTE under general condi-
tions. With the use of approximation techniques by assuming
the experimental material or tissues have highly scattering
properties and that the input radiance is isotropic and modu-
lated under a 1-GHz frequency, the BTE can be reduced to an
easily solvable form of the diffusion approximation. In NIR
imaging, mappings of the absorption and/or scattering coeffi-
cients can be evaluated by using an FEM to invert the diffu-
sion approximation. The FEM-based image reconstruction in
the dc domain is concluded with the following equations.
More derivation details can be found in Ref. 41.

As described previously, the physical process can be de-
duced from a diffusion equation:

� · D � ��r,�� − �a −
i�

c
���r,�� = − S�r,�� , �18�

where S�r ,�� and � denote the source and the radiance, re-
spectively; and a, c, and D are the absorption coefficient, the
wave speed in the medium, and the diffusion coefficient, re-
spectively. To solve Eq. �18�, the boundary condition
−D�� · n̂=�� �flux in fact� and the FEM are applied. Since
only dc data are considered, � is set as a null; i.e., the imagi-
nary part is to vanish from the subsequent equations. Thus,
the following discrete equations in a matrix form,

�19�

can be obtained. Obviously, the forward solution, �, can be
evaluated through Eq. �19�. In terms of the physical process,
the radiance matrix is quantitatively and qualitatively depen-
dent on the source matrix and the optical-property matrix,
respectively, where the optical-property matrix is the inertia
of the material in spite of relating to the wavelength. Further-
more, the following two equations can be derived for the
computation of image reconstruction, i.e.,

�Abb − �Bbb AbI

AIb AII
��

��b

�Dk

��I

�Dk

� = 	−
�Abb

�Dk
−

�AbI

�Dk

−
�AIb

�Dk
−

�AII

�Dk


��b

�I
�

+ �
�Cb

�Dk

�CI

�Dk

� , �20�

and

�Abb − �Bbb AbI

AIb AII
��

��b

�l

��I

�l

� = 	−
�Abb

�l
−

�AbI

�l

−
�AIb

�l
−

�AII

�l


��b

�I
�

+ �
�Cb

�l

�CI

�l

� . �21�

where the superscripts I and b denote interior and boundary
nodes, and Dk for k=1,2 , . . . ,K and l for l=1,2 , . . . ,L are
the reconstruction parameters for the optical property profile.
For the inverse problem to update absorption/scattering coef-
ficients, the partial differentiation of boundary radiance to the
parameters of interest, ��b /�l or ��b /�Dk, must be ob-
tained from Eqs. �20� and �21�. The Newton-Raphson tech-
nique regularized by a Levenberg-Marquardt algorithm and
with the Tikhonov regularization parameter is adopted to it-
eratively update the diffusion and absorption coefficients, i.e.,

�JTJ + �I�
� = JT��o − �c� = JT
� , �22�

where Jacobian matrix J denotes J���b /�Dk ,��b /�l�, 
�
means 
��
Dk ,
l�, and � is a Tikhonov regularization pa-
rameter of the Jacobian matrix. As described, this inversion
generally requires the construction of the Jacobian matrix;
actually, the Jacobian represents a highly underdetermined
system of equations. Although it is possible to obtain a least-
squares solution to underdetermined systems of equations, the
resulting images are usually inaccurate relating to inferior res-
olution. The procedure of FEM-based image reconstruction in
the dc domain is illustrated in Fig. 2. As indicated, the pro-
posed approach is merely implemented once, subsequently
posterior to each iteration without altering the original FEM

Fig. 2 Flowchart of NIR DOT image reconstruction incorporated with the HPF approach.
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modeling. The following section illustrates the comparison
and effectiveness of the incorporated resolution-enhanced
schemes.

3 Results and Discussion
The phantoms employed to justify our proposed technique
incorporate two or three inclusions with various sizes, loca-
tions, and separations, illustrated in Fig. 3, where R denotes
the radius in millimeters. In this paper, four HPFs and four
phantom cases were performed. The numerical simulations of
multiinclusion phantoms provide further information concern-
ing the spatial resolution �separation, size, and location� and
the contrast resolution beyond that of the single-inclusion
case. Of the phantom, the background absorption �a� and
reduced scattering �s�� values are about 0.0025 and
0.25 mm−1, respectively, while the maximum absorption and
reduced scattering for the inclusion are 0.025 and 2.5 mm−1,
if we assume the contrast ratio of the inclusion to background
is 10:1, because high contrast results in much more overlap-
ping effects than low contrast, although a contrast of 2 to 10
was used throughout other published works.

As depicted in Fig. 3, cases 1 and 2 and cases 3 and 4,
respectively, have three and two inclusions separated by a
similar distance but of different sizes. As the separation reso-
lution of inclusions is examined, several �two or three� em-
bedded inclusions are necessary, and different inclusion sizes
are considered as well. To test the limitation of each HPF
employed here, the phantoms of cases 1 and 4 with larger
inclusions and closer to the phantom center were designed,
compared with case 2 and case 3 designs. For the convenience
of discussion, we denote M0 to M4 as the reconstructions
with the schemes using nonfiltering, 	−g2��2=1.5�, g1
−g2��1=0.75,�2=1.5�, wavelet �a=0.5�, and Laplacian
HPF in their 2-D form, respectively. Currently, absorption-
coefficient images are presented for our cw image reconstruc-
tion algorithm.

In FEM-based image reconstruction, the homogeneous
background �a=0.0025 mm−1, s�=0.25 mm−1� was
adopted as an initial guess. For both the forward and inverse
processes, 256 elements and 257 nodes were used, associated
with a desktop PC with a 3.6-GHz CPU and 4 Gbytes of
RAM, respectively. Thirty iteration assignments were em-
ployed for each case as the normalized increasing rate, i.e.,
mean value of ���n+1−�n� /�n�2, reaches less than 10−2,
where each iteration takes about 2 min. Meanwhile, the
absorption- and diffusion-coefficient images were updated

concurrently in spite of the fact that reconstruction began
from a homogeneous condition and only the acquired dc data
were employed.

First, a qualitative investigation of the reconstruction per-
formance of each case is presented in Sec. 3.1. Following this
in Sec. 3.2, we describe quantitative performance measures
for various HPFs for a range of resolutions including separa-
tion, size, contrast, and location. Finally, we further investi-
gate and discuss the significance of the proposed measures in
Sec. 3.3.

3.1 Examples Illustration

3.1.1 Case 1
Figure 4 shows a set of reconstructed absorption-coefficient
images �Figs. 4�a�–4�e�� and quantitative information �Figs.
4�f�–4�j�� for the images along with their corresponding cir-
cular transaction profiles. Comparing the reconstructed ab-
sorption images, it is obvious that all of the reconstructions
show roughly correct images of the inclusions and all of the
reconstruction techniques can highly resolve images and sepa-
rate inclusions, except the result using M0. However, the M1
to M4 schemes underestimate the computed absorption coef-
ficients of the inclusions. For further inspection, M4 generated
highly ringing artifacts between inclusions. At this phase, it is
not easy to speculate about the causes of such artifacts that
might be referred to as ‘false’ inclusions and concluded as a
wrong judgment.

3.1.2 Case 2
It can be found that compared with only the image reconstruc-
tion employed, considerable improvement is observed in the
reconstructed images, as illustrated in Figs. 5�a�–5�e� when
the HPF approach is invoked. Evidently, M0 retains highly
blurred inclusions, while the other reconstruction schemes can
better differentiate inclusions, and the M4 scheme overesti-
mated the absorption coefficients. Again, ringing artifacts are
produced surrounding inclusions and their optical properties
are lower than background levels, as depicted in Figs.
5�f�–5�j�.

From the results for cases 1 and 2 note that schemes with
filtering can discriminate even small size inclusions, whereas
scheme M0 cannot meet even the basic requirements of image
reconstruction, especially for small inclusions �case 2�.

Fig. 3 Schematic diagram for the dimensions of four different test cases in simulation. �a� to �d� are cases 1 to 4, respectively, where R is radius in
millimeters.
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3.1.3 Case 3
Compared with previous two cases, this case was designed as
a phantom with three smaller inclusions. Several improved
images were obtained by using appropriate filtering, as shown
in Figs. 6�b�–6�e�. Likewise, M2 resulted in a worse-resolved
image than the others with HP filtering. Negative artifacts
occurred in each reconstructed image, as depicted in Figs.
6�g�–6�j�. It is well noted that M4 overestimated the inclusion
amplitudes, which yields a higher inclusion-to-background
contrast.

3.1.4 Case 4
In this highly challenging case, a phantom with two closest-
separation inclusions was designed. As shown in Figs.
7�a�–7�e�, all reconstructed images underestimated inclusions,
and offered relatively poor resolution for two separate inclu-
sions. This is rather competitive for these employed filters.
Based on a quantitative comparison, as depicted in Figs. 7�i�

and 7�j�, the M3 and M4 schemes demonstrate better reso-
lution discrimination to separate longer and closer inclusions
in comparison with case 3.

From the results of cases 3 and 4 for a phantom with
inclusions of both small size and close separation, it can be
concluded that the wavelet-like HP filtering �M3� demon-
strates the best spatial-resolution capability to the inclusions.

This evidently shows that the enhancement of reconstruc-
tion through the incorporation of our proposed HPF approach
can effectively improve computed images. As already illus-
trated, the wavelet-like HP filtering schemes �M3 and M4�
further yield better results than the LPF-combined HP filtering
schemes �M1 and M2�. In the aspects of sensitivity and sta-
bility of evaluation, the M3 scheme yielded results closest to
the true absorption property compared to the other schemes.
However, scheme M4 visually characterizes the inclusion-to-
background contrast best.

Fig. 4 Case 1, 2-D reconstructed absorption images �a� without HPF �M0� and �b� to �e� with M1, M2, M3, M4 filtering, respectively; �f� to �j� 1-D
sectional profiles corresponding to �a� to �e�, where the solid lines are the designed and the dotted lines represent the reconstructed schemes.

Fig. 5 Reconstructed case 2 images, with �a� to �j� as described for Fig. 4.
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3.2 Performance Investigation
In terms of the optical properties within the inclusion and the
background, note that the image reconstruction not only pur-
sues qualitative correctness but also obtains favorably quanti-
tative information about the optical properties of either the
inclusions or the background. The parameters of interest, such
as size, contrast, and location variations associated with image
quantification measures are most frequently investigated and
discussed.

Several measures42–45 have been used to evaluate the per-
formance of the NIR imaging algorithms or systems. Song et
al.42 used the contrast-to-noise ratio �CNR�, which is defined
as the difference between the region of interest �ROI� and the
background region values of the optical properties divided by
the average variation in the background, where one inclusion
was considered. Furthermore, informative works �Pogue et
al.44� provided an overview of the three major methods uti-
lized for image analysis in the imaging science and medical
physics communities, which lie in the areas of the spatial

resolution, the contrast detail �CD� analysis, and human per-
ception of images. Briefly, the first one relates to the modula-
tion transfer function �MTF� profile; the second one, to the
CD curve �contrast versus size� obtained by human observa-
tion; and the last concerns the receiver operating characteristic
�ROC� curve and location receiver operating characteristic
curve �LROC� obtained by the human observer detection of
abnormalities. In our cases, however, several inclusions in the
background of a phantom were considered and further inves-
tigations of the contrast, size, separation, and location were
conducted so that it is essential that these four terms are re-
spectively defined and discussed.

To provide a quantitative assessment for these recon-
structed images through using various HPF approaches, we
designate and formulate four measures over the ROI for the
evaluation of these filtering schemes, and these measures are
normalized to be in-between a null and unit with the ratio of
the reconstructed to the original images. To interpret these
measures in detail, we describe them using Fig. 8, where

Fig. 6 Reconstructed case 3 images, with �a� to �j� as described for Fig. 4.

Fig. 7 Reconstructed case 4 images, with �a� to �j� as described for Fig. 4.
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1D�ROI is chosen as the line segment between the two out-
most nodes of the inclusions, and 2D�ROI is the possibly
smallest region around and/or covering inclusions. Moreover,
although it is usually a difficult task to define a separation
resolution, here we regard an inclusion and a separation as a
bump and a cave, respectively.

3.2.1 Contrast resolution �Rcont.
1D,2D�

The measure Rcont.
1D,2D is defined to evaluate the resolution on

the contrast of optical property values with the inclusions to
the background region especially between inclusions.

Rcont.
1D,2D =

�max
incl./min
incl.�reconstruction

�max
incl./min
incl.�original
, �23�

and

Rcont.
1D,2D = 2 − Rcont.

1D,2D, if 1 � Rcont.
1D,2D � 2, �24�

where max and min denote the average of maxima and
minima over all the selected regions as the superscripts
�
incl. and 
incl�. Also incl. and incl correspondingly repre-
sent inclusions and complementary inclusions as well as

incl. and 
incl are chosen with several nodes around central
area of incl. and incl.

3.2.2 Separation resolution �Rsep
1D,2D�

The measure Rsep
1D,2D is designed to evaluate the resolution on

the separation between inclusions.

Rsep
1D,2D = ��1 −

�MSEincl.�Recon.2Ori.

�MSEincl.�Ori.2Baseline
�Rcont.

1D,2D�1/2

 �Rosep
1D,2D � Rcont.

1D,2D�1/2, �25�

where MSE is the mean square error over all the selected
region as the superscript �incl� and Baseline is used with
0.025 mm−1; Ori.2Baseline is, here, 0.0025 to 0.025 mm−1,
and Recon.2Ori. is the reconstructed value in the region incl
to 0.0025 mm−1.

3.2.3 Size resolution �Rsize
1D,2D�

The measure Rsize
1D,2D is designed to evaluate the resolution on

the size over all inclusions.

Rsize
1D,2D = ��1 −

�MSEincl.�Recon.2Ori.

�MSEincl.�Ori.2baseline
�Rcont.

1D,2D�1/2

 �Rosize
1D,2D � Rcont.

1D,2D�1/2, �26�

where MSE is over the selected region incl. and baseline is
used with 0.0025 mm−1. Note that the FWHM usually oper-
ated manually and subjectively is not adopted for the evalua-
tion of inclusion size. Here, attempt to automatically estimate
this resolution with the idea of the capacity rate for the term
of interest.

3.2.4 Location resolution �Rlocat
1D,2D�

The measure Rlocat
1D,2D is defined to evaluate the resolution on

the location over all inclusions.

Rlocat
1D,2D = �1 −

�CMincl.�Reconstruction

�CMincl.�Original
Rcont.

1D,2D�1/2

 �Rolocat
1D,2D � Rcont.

1D,2D�1/2, �27�

and

Rolocat
1D,2D = 2 − Rolocat

1D,2D, if 1 � Rolocat
1D,2D � 2, �28�

where CM is the average of the center of mass over all the
selected region as the superscript �incl.�.

Note that the resolutions, Rsep
1D,2D, Rsize

1D,2D, and Rlocal
1D,2D in-

clude a multiplication operation by Rcont.
1D,2D to avoid the low-

contrast reconstruction with high-consistent inclusions or
complements. Furthermore, it is expected that the resolution is
higher because the R value approaching more closely to a
unit.

Based on the preceding definitions, the evaluated resolu-
tions of 1-D profiles and 2-D images with multiinclusions are
listed in Tables 1–4 for each phantom case, respectively. The
quantities for Rsep

1D,2D, Rsize
1D,2D, and Rlocal

1D,2D are small because
the defined measures are quite strict. For overall cases, it is
found that location resolution is above 0.95 prior to Rolocat

1D,2D

multiplied by Rcont.
1D,2D, and less difference exists between these

two; whereas the contrast, separation, and size resolution have
comparable differences. Figures 9–12 illustrate comparisons
of the separation, size, and contrast resolutions among various
HP filters to clarify our observation. Overall, the resolutions
obtained in cases 1 to 3 are better than those in case 4, as
expected. Basically, our approach demonstrates the effective-
ness of separation and size resolution rather than contrast res-
olution. A discussion of each individual case follows.

3.2.5 Case 1
Figure 9�a� shows the resolution performance of schemes M3,
M1, M2, M4, and M0, respectively. The results show that the
M4 scheme yielded false inclusions. For the 2-D condition,
the revealed performance is similar to that in the 1-D condi-
tion except for the M0 and M4 schemes. Obviously, this
evaluation is consistent with that for Fig. 4 based on the visual
perception.

3.2.6 Case 2
Figure 10�a� shows the performance of schemes M4, M1, M3,
M2, and M0, respectively. The performance in the 2-D con-

Fig. 8 Diagram for the explanation of defined measures.
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dition is similar to that in the 1-D condition except for the M4
scheme. Unfortunately, a negative value occurs in the 2-D
condition �Fig. 10�b��, which means that M4 highly overesti-
mated the inclusion size.

3.2.7 Case 3
Obviously, the performance of case 3 is similar to that of case
2, shown as Fig. 11. For the same reasons as in case 2, the

highly overestimated effect of M4 attenuates the measure val-
ues. Basically, other filtering schemes obtain the measure dis-
tribution as expected.

Generally speaking, the M1 and M3 schemes perform bet-
ter than the M2 and M4 schemes on either of the defined
measures or the visual perception for cases 2 and 3.

Table 1 Case 1 separation, size, contrast, and location resolutions for various filtering on 1-D and 2-D conditions.

1-D 2-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

Sep. 0
Sep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

M0 0.46 0.93 0.12 1.00 0.92 0.94 0.58 1.00 0.98

0.23 0.33 0.35 0.73 0.74 0.76 0.76

M1 0.69 0.66 0.31 0.95 0.99 0.66 0.68 0.96 0.99

0.46 0.45 0.54 0.82 0.67 0.81 0.82

M2 0.70 0.63 0.30 0.98 0.99 0.65 0.54 1.00 1.00

0.46 0.44 0.55 0.73 0.59 0.73 0.73

M3 0.84 0.85 0.36 1.00 0.99 0.78 0.87 1.00 0.99

0.55 0.55 0.60 0.93 0.82 0.93 0.93

M4 0.74 0.71 0.15 1.00 0.97 0.65 0.80 1.00 0.98

0.33 0.32 0.38 0.88 0.72 0.89 0.88

Table 2 Case 2 separation, size, contrast, and location resolutions for various filtering on 1-D and 2-D conditions.

1-D 2-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

Sep. 0
Sep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

M0 0.84 0.85 0.10 1.00 0.95 0.87 0.24 1.00 0.98

0.29 0.29 0.32 0.48 0.46 0.49 0.49

M1 0.94 0.95 0.33 0.98 0.95 0.89 0.95 0.96 0.99

0.56 0.56 0.57 0.95 0.92 0.95 0.97

M2 0.86 0.91 0.17 0.99 0.97 0.90 0.83 0.99 0.96

0.38 0.39 0.41 0.90 0.86 0.91 0.89

M3 0.88 0.94 0.17 1.00 0.97 0.95 0.70 1.00 0.99

0.39 0.41 0.42 0.83 0.82 0.84 0.84

M4 0.87 0.87 0.40 1.00 0.74 −0.07 0.50 1.00 0.98

0.59 0.59 0.63 0.61 −0.19 0.71 0.70
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3.2.8 Case 4
In this case, Fig. 7 shows that only wavelet-like HP filtering is
able to resolve images well. As expected, Fig. 12 shows a
better performance of schemes M4 and M3 than that of
schemes M1, M2, and M0 on both the 1-D and the 2-D mea-
sures.

In summary, it can be seen that the evaluations depicted in
Figs. 9–12 using our defined measures are quite consistent
with those evaluations based on visual perception on Figs.
4–7.

Case 1 is the only example that is resolved to some extent
without having to use HPF �M0�. However, scheme M0 made
some measure evaluation better than others since the corre-
sponding M0 reconstructions have a nearly uniform distribu-
tion. In spite of this, the measures we defined remain effective
for most of the 1-D and 2-D cases.

3.3 Evaluation on Defined Measures
In an aspect of quantitative discussions on resolution, we em-
ploy these four measures to explain the effectiveness of each

Table 3 Case 3 separation, size, contrast, and location resolutions for various filtering on 1-D and 2-D conditions.

1-D 2-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

Sep. 0
Sep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

M0 0.85 0.74 0.10 1.00 0.98 0.75 0.18 1.00 1.00

0.29 0.27 0.32 0.42 0.36 0.42 0.42

M1 0.84 0.95 0.20 0.99 0.92 0.97 0.40 0.98 0.98

0.41 0.43 0.44 0.61 0.62 0.62 0.62

M2 0.57 0.86 0.12 0.98 0.91 0.94 0.33 0.96 0.99

0.26 0.32 0.34 0.55 0.56 0.57 0.57

M3 0.91 0.94 0.16 1.00 0.95 0.92 0.38 1.00 0.99

0.39 0.39 0.41 0.60 0.59 0.62 0.61

M4 0.74 0.80 0.42 1.00 0.82 0.69 0.42 0.99 0.98

0.56 0.58 0.65 0.59 0.54 0.65 0.65

Table 4 Case 4 separation, size, contrast, and location resolutions for various filtering on 1-D and 2-D conditions.

1-D 2-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

Sep. 0
Sep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

M0 0.85 0.81 0.09 1.00 0.97 0.82 0.19 0.99 1.00

0.28 0.27 0.30 0.43 0.40 0.44 0.44

M1 0.79 0.83 0.09 0.98 0.97 0.84 0.40 0.97 0.96

0.27 0.27 0.30 0.62 0.58 0.62 0.62

M2 0.63 0.81 0.08 0.98 0.94 0.85 0.31 0.96 0.99

0.22 0.25 0.28 0.54 0.51 0.54 0.55

M3 0.83 0.89 0.11 1.00 0.97 0.87 0.41 1.00 1.00

0.31 0.32 0.34 0.63 0.60 0.64 0.64

M4 0.83 0.91 0.12 0.99 0.97 0.89 0.44 1.00 0.96

0.32 0.34 0.35 0.65 0.63 0.66 0.65
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proposed filtering. Particularly, accurate demonstrations for
the 1-D condition are almost fully matched with the evalua-
tion in quality. To an extent, most are also promising for the
2-D condition. In other words, the evaluation implies that our
defined measures are quite acceptable. For further inspection,
these measures can be seen based on individual inclusion or
separation as well. In this subsection, more discussion of the
defined measures is given. First, the contrast resolution can be
also defined as

Rcont.
1D,2D =

�meanincl./meanincl.�Reconstruction

�meanincl./meanincl.�Original
, �29�

where mean is to find the average value of the selected re-
gions as the superscripts �incl. and incl�. A definition in this
manner, however, is not suitable for our cases 1 to 3. For
further investigation, Eq. �23� can be concluded as

Rcont.
1D,2D��c normal situation

=c no contrast

�c abnormal situation
� , �30�

where c is equal to 1 / �incl. /incl.� �0.1 is used here� and the
abnormal situation, here, means the optical value of the inclu-
sion is smaller than that of the separation region. Likewise,
the separation and size resolution can be defined as

Rosep;size
1D,2D =

�MSEincl.;incl.�Recon.2B�b�aseline

�MSEincl.;incl.�Ori.2B�b�aseline
. �31�

It is found that Eq. �31� eventually regards a reconstructed
“inclusion” as a reverse cave with values ranging between 0
and 1, and Eq. �31� always gives positive values. When con-
sidering Eqs. �25� and �26�, it can be proven that both
Rosep.;size

1D,2D are always smaller than a unit and, moreover, are

Fig. 9 Case 1: �a� 1-D measures and �b� 2-D measures, where solid, +,
�, �, and � lines represent using schemes of M0 to M4, respectively.

Fig. 10 Case 2 with �a�, �b� and line key as described for Fig. 9.

Fig. 11 Case 3 with �a�, �b� and line key as described for Fig. 9.

Fig. 12 Case 4 with �a�, �b� and line key as described for Fig. 9.
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negative values to denote a high underestimation or overesti-
mation. Note that our 2-D ROI can be determined automati-
cally using a computer program but not with manual selec-
tion, whereas the FWHM is not adopted in this paper because
it is selected manually. Finally, the location resolution is regu-
lated by Eq. �28�. Prior to adjustment, the positive or negative
errors to the unit can be explained as denoting the multiinclu-
sion position in a reverse direction.

4 Concluding Remarks
We proposed and implemented a resolution-enhancing tech-
nique using HPF incorporated with the FEM-based inverse
computation to obtain highly resolved NIR diffuse optical im-
ages in a systematical manner. As mentioned previously, our
approach, derived from the Poisson MAP, was justified by
various HPFs for different designated phantoms. Qualitative
visual perception and quantitative evaluations of the recon-
structions also validate the proposed approaches.

Obviously, the wavelet-like HP filtering is superior to the
LPF-combined HPF, as shown in Figs. 4–7. In summary, the
approach to use the wavelet-like HP filtering, M3, is recom-
mended in terms of its resolving ability and computational
stability. It is observed that the M4 scheme demonstrates a
high resolution result as well, but reveals worse stability than
the M3 scheme. Additionally, a small inclusion-to-background
diameter ratio, 2:20, is detectable and distinguished.

Due to the variation in the choice of �1 and �2 associated
with each filter, various filters result in different reconstruc-
tion results. In this paper, we did not attempt to conduct a
wide comparison and an extensive study over a range of HP
filters and phantom cases, but rather chose to begin with two
categories of filters and a set of more-or-less extreme cases.
Although the resolutions of absorption images enhanced with
our proposed techniques were presented, this approach re-
mains effective to improve the scattering images for the
frequency-domain DOT imaging system as well. In future
work, a thorough investigation of HP filters used in the pro-
posed approach will be conducted to find one or several ap-
propriate filters. Moreover, the resolution limit should be
specified with a set of designed cases. A further study is also
required to identify exact causes of the negative-value arti-
facts shown in Figs. 5�f�–5�j� and 6�f�–6�j� which are depen-
dent either on the filters or on the cases themselves. Owing to
the lack of a sound method for quantitative evaluation, it is
believed that even to objectively define a measure correspond-
ing to visual perception is quite complicated. Alternatively,
four reasonable measure definitions were considered and de-
fined to provide an initial basis for quantitative evaluations,
from which further explorations of an individual inclusion or
separation ROI can begin. Briefly, our proposed measures
mainly provide approximate information, and areas remain for
further investigation and improvement.
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